Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes.

نویسندگان

  • Mingzhang Guo
  • Mack H Wu
  • Ferenc Korompai
  • Sarah Y Yuan
چکیده

The protein kinase C (PKC) pathway has recently been recognized as an important mechanism in the development of diabetic complications including cardiomyopathy and angiopathy. Although an increase in PKC kinase activity has been detected in the cardiovascular system of diabetic patients and animals, it is unclear whether the same pathological condition alters PKC at the transcriptional and translational levels. In this study we assessed quantitatively the mRNA and protein expression profiles of PKC isozymes in the heart and vascular tissues from streptozotocin-induced diabetic pigs. Partial regions of the porcine PKCalpha, beta1, and beta2 mRNAs were sequenced, and real-time RT-PCR assays were developed for PKC mRNA quantification. The results showed a significant increase in the mRNA levels of PKCalpha, beta1, and beta2 in the heart at 4-8 wk of diabetes. In concomitance, the PKCbeta1 and beta2 genes, but not the PKCalpha gene, were upregulated in the diabetic aorta. Correspondingly, there was a significant increase in the protein expression of PKCalpha and beta2 in the heart and PKCbeta2 in the aorta with a time course correlated to that of mRNA expression. In summary, PKCbeta2 was significantly upregulated in the heart and aorta at both the transcriptional and translational levels during early stages of experimental diabetes, suggesting that PKCbeta2 may be a prominent target of diabetic injury in the cardiovascular system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of suitable reference genes for real-time PCR studies of early developmental stages of sturgeons

In quantitative real-time PCR, the mRNA level can be quantified in relative terms based on the expression ratio of mRNAs of the target gene and an internal reference gene. Since, an internal standard should be expressed at a constant level among different tissues of an organism at all stages of development, and should be unaffected by the experimental treatment, the stability of different refer...

متن کامل

P-178: Separation and Identification of Alkaline Phosphatase Isozymes during Pregnancy

Background: Alkaline phosphatase (ALP), (EC 3.1.3.1) is a hydrolase enzyme responsible for removing phosphate groups from various molecules in the body. In humans, ALPis present in all tissues such as liver, bile duct, kidney, bone, and the placenta which detection of its activity is so useful in molecular biology. Pregnancy is associated with normal physiological changes that assist fetal surv...

متن کامل

Evaluating the Expression of NOX2 and NOX4 Signaling Pathways in Rats’ Lung Tissues Following Local Chest Irradiation; Modulatory Effect of Melatonin

Lung injury is one of the major concerns for chest cancer patients that undergo radiotherapy as well as persons exposed to an accidental radiological event. Reduction/oxidation (redox) system plays a key role in lung injury via chronic upregulation of pro-oxidant enzymes. NOX2 and NOX4 are two important reactive oxygen species generating enzymes that are involved in radiation toxicity in some o...

متن کامل

Morphine-induced analgesic tolerance is associated with alteration of protein kinase Cγ and transient receptor potential vanilloid type 1 genes expression in rat lumbosacral cord and midbrain

Introduction: Transient receptor potential vanilloid type 1 (TRPV1) and protein kinase Cγ (PKCγ) are involved in sensitization/desensitization to noxious stimuli. We aimed to examine the gene expression levels of TRPV1 and PKCγ in rat lumbosacral cord and midbrain on days 1, 4 and 8 of induction of morphine analgesic tolerance. Methods: Two groups of male Wistar rats received ...

متن کامل

Differential expression of protein kinase C isoforms in coronary arteries of diabetic mice lacking the G-protein Gα11

BACKGROUND Diabetes mellitus counts as a major risk factor for developing atherosclerosis. The activation of protein kinase C (PKC) is commonly known to take a pivotal part in the pathogenesis of atherosclerosis, though the influence of specific PKC isozymes remains unclear. There is evidence from large clinical trials suggesting excessive neurohumoral stimulation, amongst other pathways leadin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2003